Equally, when the moon and sun are pulling at right angles to one another, their influence cancels out, to some extent, and we get neap tides - high tides are at their lowest, and low tides their highest.
Slow spin-down - the long-term influence of tides
Beyond just causing the daily ingress and egress of the ocean on to land, tides raised by the moon on Earth have another interesting effect - they are slowly causing Earth's rotation to slow.
As we all know, Earth spins on its axis once a day, but the moon takes almost a whole month to orbit our planet. As a result, the location of the tidal bulges from the moon move around our planet significantly more slowly than Earth's surface spins.
Friction causes the bulges to be pulled along with Earth's motion, to some degree, and they end up slightly ahead of the location directly beneath the moon.
We're slowly growing apart - the moon's recession
The rate at which the moon is receding from Earth is relatively small, but easily measured (using the retroreflectors left on the Moon's surface by the Apollo astronauts, among other techniques).
Currently, the recession is only around 22 millimetres a year, causing one Earth day to lengthen by about 23 microseconds a year.
Synchronous rotation
Earth exerts tides on the moon, just as the moon exerts tides on Earth. Since Earth is comparatively massive, the tides it raises on the moon are much greater than those raised by the moon on Earth.
And those tides long ago slowed the moon's rotation so that it spins on its axis exactly once in the time it takes to orbit our planet once.
As the moon recedes from Earth, its orbital period will increase, but the strength of Earth's tides will ensure its spin slows, so it will continue to show the same face to our planet.
Jonti Horner is an astronomer and astrobiologist based at the University of New South Wales, in Sydney.
theconversation.edu.au