With the latest gene-editing techniques, it could be possible, although challenging, to make a tomato produce capsaicinoids as well, researchers argue in an opinion article published this week in the journal Trends in Plant Science.
"Engineering the capsaicinoid genetic pathway to the tomato would make it easier and cheaper to produce this compound, which has very interesting applications," said senior author Agustin Zsögön, a plant biologist at the Federal University of Viçosa in Brazil whose group is working toward this goal.
"We have the tools powerful enough to engineer the genome of any species; the challenge is to know which gene to engineer and where."
The spicy taste that capsaicinoids add isn't a taste, but a reaction to pain. They activate nerve cells in the tongue that deal with heat-induced pain, which the brain interprets as a burning sensation. Evidence suggests the evolution of capsaicinoids helped chili peppers deter small mammals from eating their fruit. Birds, which are much better seed dispersers, show no pain response to the molecules.
There are at least 23 different types of capsaicinoids, which originate from the pith of the chilli pepper. The spiciness of a pepper is determined by the genes that regulate capsaicinoid production, and less pungent peppers have mutations affecting this process. Previous gene sequencing work has shown that tomatoes have the genes necessary for capsaicinoids but don't have the machinery to turn them on.
"In theory you could use these genes to produce capsaicinoids in the tomato," said Zsögön. "Since we don't have solid data about the expression patterns of the capsaicinoid pathway in the tomato fruit, we have to try alternative approaches. One is to activate candidate genes one at a time and see what happens, which compounds are produced. We are trying this and a few other things."
The sequencing of the chilli pepper genome and the discovery that the tomato has the genes necessary for pungency paves the way for engineering a spicy tomato. The researchers write that not only will this endeavour help better understand the evolution of this unique botanical trait and allow for the development of tomato capsaicinoid biofactories, but perhaps allow for the development of some new varieties of produce in the grocery aisle.