Estimates have suggested that this costs over $10 million to the Australian wine industry each vintage, so understanding what controls the natural levels of acids like tartaric in the grape berry has the potential to save the industry significant sums of money.
"For this to become a reality, we need first to understand the details of the biochemical pathway that produces tartaric acid in the grape" said Ford.
This recent discovery follows an earlier collaboration with University of California Davis, when in 2006 the first enzyme in the six-step pathway that leads from vitamin C (ascorbic acid) to tartaric acid was discovered.
Now a second enzyme has been identified and its structure determined and results published in the Journal of Biological Chemistry.
Ford and Dr John Bruning, a protein crystallographer and enzymologist from the School of Biological Sciences and Institute for Photonics and Advanced Sensing, worked with researchers at Flinders University, the James Hutton Institute, Dundee, and postgraduate students Crista Burbidge, Emi Schutz and Yong Jia.
They identified the enzyme based on its similarity to a bacterial enzyme with the same properties.
The enzyme was confirmed on the basis of its biochemical activity, and crystals of the enzyme grown so that its structure could be determined to atomic resolution using high-powered X-rays.
"Now that we understanding the 3D structure of this enzyme we can define its function and therefore its chemical mechanism and how it carries out its job in the grape" said Bruning.
"That means we can modify the structure for biotechnological purposes down the line, such as altering the protein to change tartaric acid levels in the plant, instead of directly adding the acid at huge cost to winemakers".
"As each piece of this intriguing puzzle falls in to place, our understanding of the metabolism of this critical grape acid increases. We now need to get to grips with the genetic, environmental and viticultural factors we may be able to manipulate to modulate the natural levels of tartaric acid in the grape" said Ford.