Akshat Rathi: The big bang that shook the world

41 comments

Collision with giant asteroid early in Earth's history may have initiated the movement of tectonic plates.

The asteroid's impact with Earth would have caused 10.8 magnitude earthquakes - roughly 100 times the size of the 2011 Japanese quake, which is among the biggest in recent history.
The asteroid's impact with Earth would have caused 10.8 magnitude earthquakes - roughly 100 times the size of the 2011 Japanese quake, which is among the biggest in recent history.

Earth was still a violent place shortly after life began, with regular impactors arriving from space. For the first time, scientists have modelled the effects of one such violent event - the strike of a giant asteroid. The effects were so catastrophic that, along with the large earthquakes and tsunamis it created, this asteroid may have also set continents into motion.

The asteroid to blame for this event would have been at least 37km in diameter, which is roughly four times the size of the asteroid that is alleged to have caused the death of dinosaurs. It would have hit the surface of the Earth at a speed of about 72,000km/h and created a 500km-wide crater.

At the time of the event, about 3.26 billion years ago, such an impact would have caused 10.8 magnitude earthquakes - roughly 100 times the size of the 2011 Japanese earthquake, which is among the biggest in recent history. The impact would have thrown vapourised rock into the atmosphere, which would have encircled the globe before condensing and falling back to the surface.

During the debris re-entry, the temperature of the atmosphere would have increased and the heat wave would have caused the upper oceans to boil.

Donald Lowe and Norman Sleep at Stanford University, who published their research in the journal Geochemistry, Geophysics, Geosystems, were able to say all this based on tiny, spherical rocks found in the Barberton greenstone belt in South Africa. These rocks are the only remnants of the cataclysmic event.

According to Simon Redfern at the University of Cambridge, there are two reasons why Lowe and Sleep were able to find these rocks. First, the Barberton greenstone belt is located on a craton, which is the oldest and most stable part of the crust. Second, at the time of the event, this area was at the bottom of the ocean with ongoing volcanic activity. The tiny rocks, after having been thrown into the atmosphere, cooling, and falling to the bottom of the ocean, then ended up trapped in the fractures created by volcanic activity.

This impact may have been among the last few major impacts from the Late Heavy Bombardment period between 3 and 4 billion years ago. The evidence of most of these impacts has been lost because of erosion and the movement of the Earth's crust, which recycles the surface over geological time.

However, despite providing such rich details about the impact, Lowe and Sleep are not able to pinpoint the location of the impact. It would be within thousands of kilometres of the Barberton greenstone system, but that is about all they can say. The exact location may not be that important, Lowe argued: "With this study, we are trying to understand the forces that shaped our planet early in its evolution and the environments in which life evolved."

One of the most intriguing suggestions the authors make is that this three-billion-year-old impact may have initiated the movement of tectonic plates, which created the continents that we observe on the planet.

The continents ride on plates that make up Earth's thin crust; the crust sits on top of the mantle, which is above a core of liquid iron and nickel. The heat trapped in the mantle creates convection, which pushes against the overlying plates.

All the rocky planets in our solar system - Mercury, Venus, Earth and Mars - have the same internal structure. But only Earth's crust shows signs of plate motion.

A possible reason why Earth has moving plates may be to do with the heat trapped in the mantle. Other planets may not have had as much heat trapped when they formed, which means the convection may not be strong enough to move the plates.

However, according to Redfern: "Even with a hot mantle you would need something to destabilise the crust."

And it is possible that an asteroid impact of this magnitude could have achieved that.

Giant strike

• For the first time, scientists have modelled the effects of the strike of a giant asteroid.

• The effects were so catastrophic that, along with the large earthquakes and tsunamis it created, this asteroid may have also set continents into motion.

• All the rocky planets in our solar system - Mercury, Venus, Earth and Mars - have the same internal structure. But only Earth's crust shows signs of plate motion.

• The asteroid would have been at least 37km in diameter, which is roughly four times the size of the asteroid that is alleged to have caused the death of dinosaurs.

• It would have hit the surface of Earth at a speed of about 72,000km/h and created a 500km-wide crater.

Akshat Rathi is a commissioning editor for The Conversation (Science + Data).

theconversation.com

The Conversation

Have your say

We aim to have healthy debate. But we won't publish comments that abuse others. View commenting guidelines.

1200 characters left

Sort by
  • Oldest

© Copyright 2014, APN New Zealand Limited

Assembled by: (static) on red akl_n2 at 23 Aug 2014 04:19:36 Processing Time: 429ms